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Source of relaxation in the one-dimensional gravitating system
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Recent numerical experiments suggest that the one-dimensional system consibtipgraflel mass sheets
relaxes on two time scaleét) a rapid violent phase with duration of ordgr(a typical system crossing time
resulting in a stationary quasiequilibrium distribution, followed(Bya gradual succession of quasiequilibrium
states leading finally to thermal equilibrium. Each quasiequilibrium state is characterized by a stationary
solution of the Vlasov equation within which fluctuations relax ofwécroscopig time scale on the order of
aNt. with e~ 1, while the final macroscopic evolution of quasiequilibrium states takes plagdltp, with
B~10". The purpose of this paper is to demonstrate that both the microscopic and macroscopic relaxation time
scales can be completely explained within the context of the diffusion model developed specifically for this
system[S1063-651X96)51905-1

PACS numbg(s): 05.40+j, 98.10+z, 98.62.Ai

. INTRODUCTION scale of at least 1@, . Shortly thereafter, Tsuchiyet al.[12]

confirmed the prediction by direct simulation. Very recently
The system of parallel mass she€3®MSs has proved to  they demonstratefil3] that the macroscopic thermalization
be popular for exploring the evolution of a classibbody  time scale seems to go @&Nt., with B~10". They also

system in which only gravitational forces act. The massypserved that the relaxation of microscopic fluctuations oc-
sheets are of constant density and infinite extent and move ig;req similarly inaNt, but with a~1 [13]
c .

one dimension perpendicular to their surface. Since, between In a parallel work, Miller developed aab initio theory

Crossings, _each mass sheet has constant accelerat!on, the FF the relaxation of fluctuations about equilibrium in the
tem evolution can be simulated on a computer without re-

. - >0 . X . SPMS under conditions of largd [14]. It was developed
sorting to the stepwise integration of coupled differential . . . :
equations. Thus it is possible to evolve the system rapidl rom the _S|_ngle assumptlon that_the acceleratlo_n and velocity
and with high precision for very long time periods and, Con_of an individual she(_at is approximately Markovian. Vgry re-
sequently, it was possible to investigate many of the sys¢€ntly Yawn and Miller extended the approad®] to in-
tem’s dynamical features even with the slower technolog;F'Ude microscopic reIa_xanqn in an arbitrary quaS|eqU|I|pr|um
available in the previous two decades. state, where, by quasiequilibrium, | mearnuaspace(posi-

Astronomers and astrophysicists have viewed the systef#on. velocity distribution which is stationary under a *“col-
as an idealized one-dimensional “galaxy” and used it to tesfisionless” Vlasov evolutior{16].
various theories of relaxation such as Lynden-Bell’'s predic- The diffusion theory is based on the observation that
tions[1] for the final state of the initial violent phagg] or, ~ when a pair of mass sheets cross, the change in acceleration
more recently, Schmidt and Weichen’s variational theory ofof each sheet is discontinuous and of the ordé¥.1IThus, in
Vlasov relaxatior{3,4]. It has even been conjectured that the SPMSs, acceleration plays the role of the velocity of the
system represents the motion of stars perpendicular to theroverbial “pollen grain” in the classic theory of Brownian
plane of a highly flattened galax$]. However, as the sim- motion[17]. Under the assumption that sheet crossings occur
plestN body gravitational system, the model merits study inat random times, it was shown that the usual, deterministic,
its own right. Vlasov evolution was recovered in the limit of largé In

Some time ago, by observing the evolution of snidll  addition, it was shown that by scaling the fluctuations in
systems, Hohl and Feif6] conjectured that the SPMS re- acceleration and velocity byN, a Fokker-Planck equation
laxes to the state of thermal equilibrium on a time scale ofor the evolution of the probability distribution of treealed
N2t.. This estimate was accepted by the astronomy commufluctuations in acceleration and velocity emerges from the
nity and reported in the literature for over a decfifle Care- N-—« limit and defines a generalized Ornstein-Uhlenbeck
ful study of systems consisting of 100 sheets carried out byrocesq18].
Wright et al. did not support their conclusioi§] and led to In the following paragraphs | will show that the Markov
a number of inconclusive studies concerning the system’spproach can be employed to obtain a diffusion equation for
ergodic properties and the eventual outcome of the evoluthe evolution of the energy distribution of a mass sheet. The
tionary proces$9,10. However, it was apparent from all of theory proceeds by first observing that all of the stationary
these studies that thermalization, if it occurred, was a verylasov orbits are periodic, and then demonstrating that the
slow process. Reidl and Milldd 1] demonstrated that a class variance in energy in a single Vlasov orbit is independent of
of stable orbits became unstable fér-10. By extrapolating the initial phase. Under the Markov assumption, it is shown
the convergence of the Lyapunov exponents from distincthat the variance in energy per cycle decreases exactly as
unstable regions of the phase space they conjectured that, fbfN. With the additional assumption that the energy of a
N=11, the system was ergodic and thermalized on a timénass sheet is Markovian on the intermediate time scale of
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the orbital period, an alternative Fokker-Planck equation for In the N—c limit, the system can be regarded as a con-
the evolution of the energy distribution is obtained. This or-tinuous fluid with « space density equal tb(x,v) which
bit averaged evolution equation can be applied directly to thevolves under the collisionless Vlasov equation
problem of microscopic relaxation. It can also be adapted to
macroscopic relaxation in which the quasiequilibrium state of ot  of
. - ) —+v—+a—=0, (5)

evolves very slowly. In each case, since the variance in en- ot X v
ergy per cycle scales exactly asNL,/the relaxation time for
the appropriate process must be strictly proportion&ltds ~ Wherea=a(x,[p]) is the acceleration of a fluid mass point
the numerical experiments demonstrate, the two relaxatioand depends functionally on the density
time scales are distinguished only by the coefficientNof § ”
[13] _ s ’ AN ’ A

Here | will first briefly review the Markov theory. | will ax[p])= L dx'p(x’) f_xdx px')= X ©)
then derive a differential equation for the variance of the
scaled energy of a mass sheet and use it to didwhat the  and ¢(x) is the local potential function associated within
variance per cycle is independent of the initial orbit phasea stable, stationary, Vlasov flow each mass point executes
and(2) that it scales exactly as M/ For the specific case of periodic motion with constant energy per unit mass
equilibrium the numerical solution for the variance will be ¢=(3)v2+ ¢(x) and periodT(¢).

examined and it will be apparent that it has all of the claimed  For sufficiently largeN, the actual motion of a particle in

properties. This leads naturally to the Fokker-Planck equathe SPMS closely approximates that of a fluid mass point
tion for the evolution of the energy distribution. Finally, I following the Vlasov flow. However, as time progresses, the
will indicate how solutions can be obtained in principle for accumulation of discreteness effects resulting from random

each type of relaxation. crossings with its neighbors cause the particle to drift away
from the original Vlasov orbit. Thus, wheN is large, par-
Il. THE A-V PROCESS ticle motion can be regarded as the slow sampling of a se-

guence of nearby Vlasov trajectories. Numerous simulations
have demonstrated that, following the initial relaxation pe-
riod, the system settles down in a quasiequilibrium state

. o ; ; which changes very slowl{8,10]. Thus it can be assumed
respectively, the position, velocity, and acceleration of Mas§at. subsequent to this initial periotl(x,v) is closely rep-

sheefj; 1<j<N. The acceleration of a sheet is proportional jesenteq by a stationary Viasov distribution, stx,v),
to the difference between the mass density on its right ang,,ich evolves very slowly in time.

left. In these units;=(N—2j+1)/N [15], where here the Recently Yawn and | showed that under this condition
sheet labels are ordered from left to right. Thus the system O(fwaf) the acceleration and velocity of a single particle in

sheets can be regardedM9articles of massn=1/N mov- g]e SPMS can be represented by a Markov protesA-V

First | will describe the setupl5]. | have chosen units
where both the total sheet surface density an@2 G is the
gravitational constantare unity. Letx;, v;, anda; denote,

ing on the line. Each particle experiences a constant acce Srocess[15]. As expected, in the limiN— the process is

eration until it encounters another. When two particles Crosgjeterministic and the stochastic motion reduces to the Vlasov
they simply pass through each other and exchange accelergs,, e also examined the deviations from the flow. Let
tion. The energy of this one-dimensional conservative sys-

tem is simply ¢&=VN[at)-ap(t)], »=N®-vpt)] @
1 , 1 where a(t) and v(t) are the acceleration and velocity of
E=5N 121 vit N2 1< Slen IXi=x;. (1) some test particle in the system aag(t) andvp(t) are its

image under the Vlasov flow at timeand are defined by
&= n=0 at the initial timet=0. Then, in the limitN— oo,

the Markov assumption results in a Fokker-Planck equation
for the probability density functioor PDP P(¢, %;t),

Let fy(x,v) denote the singlet distribution in space(posi-
tion, velocity), but normalized to unity, andy(x) denote the

density as
1 P& mt) _ IFP  9F P 15°DgP
_ _ _ 2 8
fnxo)={ 5 Zl S(x—x;) (v —v;) ), ) at a€ an 2 9

with time dependent shift vectd¥ and diffusion tensob,
fn(x,v)dv, (3 d Inpp
” Fe=—2npp+&vpo—
D

1 N
pN<x,v>=<N 2 5<x—xi>> =f

, F,=€ C)

where the angle brackets denote the ensemble average. Then,

with these unitsfy(x,v) is also the mass density jn space. D, =D,;=D,,=0, D§§:4fw oo’ —ofxg ")
In thermal equilibrium, Rybicki showed thit 9] v K e
(10)

lim fy(x,0)= Le‘vzsecﬁx. (4)  where, in(9), pp=p(Xp). SinceF is linear in the state vari-
N— o 2w ables ¢, 7), and D depends only on time, the stochastic
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process falls in the class known as generalized Ornstein- ) . dap )
Uhlenbeck and has a bivariate Gaussian distributiod, i Xp=Up, Up=2ap, aD:WUD: T2 Up;
[18]. In the case of equilibrium we compared the predictions b D

of the diffusion theory with actual simulations and obtained
good agreement for short timgss].

The Fokker-PlanckKFP) equation can be used to obtain
coupled ordinary differential equations for evolution of the
moments of¢ and » which will be of use below15]. Let
M n(t) =(&(t)"7(t)") with m,n positive integers. By mul- d 1 a2 (=
tiplying the FP equation(8), by &™»" and integrating over —((86)?)= __ZQJ dv’|o’ —vp|f(xp,0'). (16)
¢ and », | obtain the following set of coupled ordinary dif- dt N ppJ =

ferential equations foM, ,(t), the ensemble average of , ) ,
£ Note that the right-hand side §16) depends on time only

throughxp, vp, ap, andpp which are all time periodic
dM,, J Inpp with periodT(s_)._Thys the rate of inprease of the varian.ce i;
dt’ =—2ppMm-1ns1t muDTMmn 9xactly periodic in time, so the variance a_fter one period is
D independent of the initial phase of the particle on the Vlasov
1 trajectory.
Mg -1t SMM=1)D My 5. Let o?=N(6¢(T)?) and note that it is independent of
N, of time, and the initial phase of a Vlasov trajectory. For a
11 particular choice off (x,v) it depends only ore. Now, as
) N N becomes large, the energy of a particle will differ very
In particular, note that the conditiof(t=0)=7(t=0)=0 |ittle from that of its Vlasov image after only one period.
ensures thaM, (t) =Mg(t)=0. In the following I will  Thys, over a time scale of many periodsijtself may be
only need the second order momeMs (t), M, ((t), and  regarded as Markov. Moreover, since the change during
M1 4(t) which, as expected for a Gaussian process, arg period becomes small with increasiig the process is

. 9dpp
D= 55, U0 (15

Taking the derivative of14) wrt time then simply yields

coupled by(11) to form a closed set. continuous and can be modeled as a diffusion. As such, the
Fokker-Planck equation governiiy e,t), its statistical dis-
Il. DIFFUSION IN ENERGY tribution, is determined solely by(8e(T))/T and

, o , _(8e(T)?)IT, the first and second infinitesimal increments of
_ Consider a labeled test particle in the SPM_S and |dent|fy8(T) [17,18. By evaluating the increments after a time in-
its energy ass(x,v), the energy of the associated VIasov (gnq| T, we obtain a theory which is valid on time scales
orbit. As a result of filffu,smn, after a 'E|me it ,W”! have  \yhereT is small. In the parlance of astrophysics literature,
position and velocity’, v’ and energy’=&(x",v’). Lt this js an “orbit-averaged” Fokker-Planck equati§@0].
ox(1), du(t), and sa(t) represent the small deviations of prom the above it is clear that the first increment vanishes

X, v, and_a from their Vl_asov images after. Th.e Vlasov and the second increment is simplrﬁ/NT. Thus P(e,t)

flow provides a connection between acceleration and posis,,yes according to the FP equation

tion so, from(6), note that
2

g

IP(e,t) 1 &2 b
NT (&,t)

_a__ a2 962
da=—==2pdx. (12)

. (17)

. o ~ Formally, asN—, P(e,t) becomes stationary. However,
Thus the change in energy in tintecan be expressed in py introducing the scaled time=t/N and the diffusion

terms of the scaled Markov variabl€sy “constant” (or function D(&)=?/T, we finally get
a 1 a dP(e,7) 1 52 [D(&)P(e.7)] 18
58—v5v+55a—\/—N v577+55§ . (13 or 5 752LD(e)P(e,7

Equation(13) is important because it establishes the reIation—for P(e,7) which has no explicit dependence bh

ship between the energy fluctuations of a test particle and the
Markovian variables, . It is easily seen fronf11) that the IV. INTERPRETATION AND CONCLUSIONS

mean vanishes(gs)=0) and the variance ofs is given by There are two possible interpretations of Etf). First it

provides the evolution of the energy probability density

1 a5 apup function for a labeled “test” icle i s

2_ 2, “D 2 particle in the system; i.e.,

{(8) >_N vo((d7) >+4p%<(58) Al PD (927} given a particular initial energys;,, in which case
(14) P(e,0)=6(e—gy,), its solution yieldsP (e, 7)de, the prob-

ability of finding the particle in the small energy rande

A differential equation for the evolution of the variance in after the(scaled time . The structure of the equation is
time is obtained by invoking11) and recalling that on a deceptively simple. For an arbitrary, Vlasov stationary,
Vlasov trajectory, f(x,v), the evaluation requires the solution @f7) and the
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FIG. 1. Evolution of the scaled variance in enerd.ds(t)?),
versus time. Note that the behavior is nearly linear, and that th

increase per period is an invariant, so that the function can be reﬁN

resented as a linear term plus a bounded periodic oscillation.

evaluation ofT(&) for everye [20]. In practice this can be
accomplished numerically, but the details are not given her
However, let me mention that the process is simplified b
taking advantage of the fact that a station&rfunctionally
depends orx and v only through its dependence on the
specific energy h=v2%/2+¢(x) [16,21]. In Fig. 1,
N(8e(t)?) is plotted for(2), the equilibrium case. Note that
it increases nearly linearly with time and, more importantly,
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is the key point. Thus, for a given stationafyx,v), (18)
provides the microscopic relaxation of the energy distribu-
tion of a test particle resulting from its drift from orbit to
orbit in u space.

Of equal or greater importance is the fact tfiE) can be
used to determine the macroscopic evolutiorfi(ef,v) itself.
This can be seen by noting that the energgathparticle in
the system diffuses and therefore qualifies as a “test” par-
ticle. ThusP(e,7) can be interpreted as the energy distribu-
tion for all of the particles in the entire system. As such, it is
related tof (x,v) through

P(S'T):ﬁo dx’ﬁo dv’ a[h(x' ")~ 8]f(x',0";7)

=f(e,7)/T(e,7). (19

With this P-f connection, sinc® is also a functional of
[see(16) and(19)], (18) now provides a nonlinear equation
for the evolution off (x,v). In practice it can be solved nu-
merically by first advancing® for a given potential function
¢(x), and then determining the changefirinduced by the
newP. This procedure was successfully introduced by Cohn
[20] for the case of a relaxing globular cluster. In the future

4 plan to show that the method is also suited for the SPMSs

vith none of the additional approximations required in the
cluster case.

The central conclusion is that, in each interpretation, time
scales withN exactly and there is no additional, hiddéh
dependence. Thus, in agreement with the recent simulations
'13], eachrelaxation process occurs on a time scale propor-
tional toN and only differs from the other by a multiplicative
constant, i.e. or 8. | will plan in a future publication to
provide the details for calculating these constants.
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Foundation of Texas Christian University and for the graph

the increase per period is exactly constant, as expected. Thssipplied by Ken Yawn.
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