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Recent numerical experiments suggest that the one-dimensional system consisting ofN parallel mass sheets
relaxes on two time scales:~1! a rapid violent phase with duration of ordertc ~a typical system crossing time!
resulting in a stationary quasiequilibrium distribution, followed by~2! a gradual succession of quasiequilibrium
states leading finally to thermal equilibrium. Each quasiequilibrium state is characterized by a stationary
solution of the Vlasov equation within which fluctuations relax on a~microscopic! time scale on the order of
aNtc with a'1, while the final macroscopic evolution of quasiequilibrium states takes place inbNtc , with
b'104. The purpose of this paper is to demonstrate that both the microscopic and macroscopic relaxation time
scales can be completely explained within the context of the diffusion model developed specifically for this
system.@S1063-651X~96!51905-7#

PACS number~s!: 05.40.1j, 98.10.1z, 98.62.Ai

I. INTRODUCTION

The system of parallel mass sheets~SPMSs! has proved to
be popular for exploring the evolution of a classicalN body
system in which only gravitational forces act. The mass
sheets are of constant density and infinite extent and move in
one dimension perpendicular to their surface. Since, between
crossings, each mass sheet has constant acceleration, the sys-
tem evolution can be simulated on a computer without re-
sorting to the stepwise integration of coupled differential
equations. Thus it is possible to evolve the system rapidly
and with high precision for very long time periods and, con-
sequently, it was possible to investigate many of the sys-
tem’s dynamical features even with the slower technology
available in the previous two decades.

Astronomers and astrophysicists have viewed the system
as an idealized one-dimensional ‘‘galaxy’’ and used it to test
various theories of relaxation such as Lynden-Bell’s predic-
tions @1# for the final state of the initial violent phase@2# or,
more recently, Schmidt and Weichen’s variational theory of
Vlasov relaxation@3,4#. It has even been conjectured that the
system represents the motion of stars perpendicular to the
plane of a highly flattened galaxy@5#. However, as the sim-
plestN body gravitational system, the model merits study in
its own right.

Some time ago, by observing the evolution of smallN
systems, Hohl and Feix@6# conjectured that the SPMS re-
laxes to the state of thermal equilibrium on a time scale of
N2tc . This estimate was accepted by the astronomy commu-
nity and reported in the literature for over a decade@7#. Care-
ful study of systems consisting of 100 sheets carried out by
Wright et al.did not support their conclusions@8# and led to
a number of inconclusive studies concerning the system’s
ergodic properties and the eventual outcome of the evolu-
tionary process@9,10#. However, it was apparent from all of
these studies that thermalization, if it occurred, was a very
slow process. Reidl and Miller@11# demonstrated that a class
of stable orbits became unstable forN.10. By extrapolating
the convergence of the Lyapunov exponents from distinct
unstable regions of the phase space they conjectured that, for
N>11, the system was ergodic and thermalized on a time

scale of at least 107tc . Shortly thereafter, Tsuchiyaet al. @12#
confirmed the prediction by direct simulation. Very recently
they demonstrated@13# that the macroscopic thermalization
time scale seems to go asbNtc , with b'104. They also
observed that the relaxation of microscopic fluctuations oc-
curred similarly inaNtc but with a'1 @13#.

In a parallel work, Miller developed anab initio theory
for the relaxation of fluctuations about equilibrium in the
SPMS under conditions of largeN @14#. It was developed
from the single assumption that the acceleration and velocity
of an individual sheet is approximately Markovian. Very re-
cently Yawn and Miller extended the approach@15# to in-
clude microscopic relaxation in an arbitrary quasiequilibrium
state, where, by quasiequilibrium, I mean am space~posi-
tion, velocity! distribution which is stationary under a ‘‘col-
lisionless’’ Vlasov evolution@16#.

The diffusion theory is based on the observation that
when a pair of mass sheets cross, the change in acceleration
of each sheet is discontinuous and of the order 1/N. Thus, in
SPMSs, acceleration plays the role of the velocity of the
proverbial ‘‘pollen grain’’ in the classic theory of Brownian
motion@17#. Under the assumption that sheet crossings occur
at random times, it was shown that the usual, deterministic,
Vlasov evolution was recovered in the limit of largeN. In
addition, it was shown that by scaling the fluctuations in
acceleration and velocity byAN, a Fokker-Planck equation
for the evolution of the probability distribution of thescaled
fluctuations in acceleration and velocity emerges from the
N→` limit and defines a generalized Ornstein-Uhlenbeck
process@18#.

In the following paragraphs I will show that the Markov
approach can be employed to obtain a diffusion equation for
the evolution of the energy distribution of a mass sheet. The
theory proceeds by first observing that all of the stationary
Vlasov orbits are periodic, and then demonstrating that the
variance in energy in a single Vlasov orbit is independent of
the initial phase. Under the Markov assumption, it is shown
that the variance in energy per cycle decreases exactly as
1/N. With the additional assumption that the energy of a
mass sheet is Markovian on the intermediate time scale of
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the orbital period, an alternative Fokker-Planck equation for
the evolution of the energy distribution is obtained. This or-
bit averaged evolution equation can be applied directly to the
problem of microscopic relaxation. It can also be adapted to
macroscopic relaxation in which the quasiequilibrium state
evolves very slowly. In each case, since the variance in en-
ergy per cycle scales exactly as 1/N, the relaxation time for
the appropriate process must be strictly proportional toN. As
the numerical experiments demonstrate, the two relaxation
time scales are distinguished only by the coefficient ofN
@13#.

Here I will first briefly review the Markov theory. I will
then derive a differential equation for the variance of the
scaled energy of a mass sheet and use it to show~1! that the
variance per cycle is independent of the initial orbit phase,
and~2! that it scales exactly as 1/N. For the specific case of
equilibrium the numerical solution for the variance will be
examined and it will be apparent that it has all of the claimed
properties. This leads naturally to the Fokker-Planck equa-
tion for the evolution of the energy distribution. Finally, I
will indicate how solutions can be obtained in principle for
each type of relaxation.

II. THE A-V PROCESS

First I will describe the setup@15#. I have chosen units
where both the total sheet surface density and 2pG (G is the
gravitational constant! are unity. Letxj , v j , andaj denote,
respectively, the position, velocity, and acceleration of mass
sheetj ; 1< j<N. The acceleration of a sheet is proportional
to the difference between the mass density on its right and
left. In these unitsaj5(N22 j11)/N @15#, where here the
sheet labels are ordered from left to right. Thus the system of
sheets can be regarded asN particles of massm51/N mov-
ing on the line. Each particle experiences a constant accel-
eration until it encounters another. When two particles cross
they simply pass through each other and exchange accelera-
tion. The energy of this one-dimensional conservative sys-
tem is simply
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j51

N

v j
21
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1< i, j<N
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Let f N(x,v) denote the singlet distribution inm space~posi-
tion, velocity!, but normalized to unity, andrN(x) denote the
density as

f N~x,v !5K 1N (
i51

N

d~x2xi !d~v2v i !L , ~2!

rN~x,v !5K 1N (
i51

N

d~x2xi !L 5E
2`

`

f N~x,v !dv, ~3!

where the angle brackets denote the ensemble average. Then,
with these units,f N(x,v) is also the mass density inm space.
In thermal equilibrium, Rybicki showed that@19#
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In theN→` limit, the system can be regarded as a con-
tinuous fluid withm space density equal tof (x,v) which
evolves under the collisionless Vlasov equation

] f

]t
1v

] f

]x
1a

] f

]v
50, ~5!

wherea5a(x,@r#) is the acceleration of a fluid mass point
and depends functionally on the densityr:
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andf(x) is the local potential function associated withf . In
a stable, stationary, Vlasov flow each mass point executes
periodic motion with constant energy per unit mass

«5( 12 )v
21f(x) and periodT(«).

For sufficiently largeN, the actual motion of a particle in
the SPMS closely approximates that of a fluid mass point
following the Vlasov flow. However, as time progresses, the
accumulation of discreteness effects resulting from random
crossings with its neighbors cause the particle to drift away
from the original Vlasov orbit. Thus, whenN is large, par-
ticle motion can be regarded as the slow sampling of a se-
quence of nearby Vlasov trajectories. Numerous simulations
have demonstrated that, following the initial relaxation pe-
riod, the system settles down in a quasiequilibrium state
which changes very slowly@8,10#. Thus it can be assumed
that, subsequent to this initial period,f N(x,v) is closely rep-
resented by a stationary Vlasov distribution, sayf (x,v),
which evolves very slowly in time.

Recently Yawn and I showed that under this condition
( f N' f ) the acceleration and velocity of a single particle in
the SPMS can be represented by a Markov process~theA-V
process! @15#. As expected, in the limitN→` the process is
deterministic and the stochastic motion reduces to the Vlasov
flow. We also examined the deviations from the flow. Let

j5AN@a~ t !2aD~ t !#, h5AN@v~ t !2vD~ t !# ~7!

where a(t) and v(t) are the acceleration and velocity of
some test particle in the system andaD(t) andvD(t) are its
image under the Vlasov flow at timet and are defined by
j5h50 at the initial timet50. Then, in the limitN→`,
the Markov assumption results in a Fokker-Planck equation
for the probability density function~or PDF! P(j,h;t),
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with time dependent shift vectorF and diffusion tensorD,

Fj522hrD1jvD
] lnrD

]xD
, Fh5j ~9!

Djh5Dhj5Dhh50, Djj54E
2`

`

dv8uv82vDu f ~xD ,v8!
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where, in~9!, rD5r(xD). SinceF is linear in the state vari-
ables (j, h), andD depends only on time, the stochastic
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process falls in the class known as generalized Ornstein-
Uhlenbeck and has a bivariate Gaussian distribution inj,h
@18#. In the case of equilibrium we compared the predictions
of the diffusion theory with actual simulations and obtained
good agreement for short times@15#.

The Fokker-Planck~FP! equation can be used to obtain
coupled ordinary differential equations for evolution of the
moments ofj andh which will be of use below@15#. Let
Mm,n(t)5^j(t)mh(t)n& with m,n positive integers. By mul-
tiplying the FP equation,~8!, by jmhn and integrating over
j andh, I obtain the following set of coupled ordinary dif-
ferential equations forMm,n(t), the ensemble average of
jmhn:

dMm,n

dt
522rDMm21,n111mvD

] lnrD
]xD

Mm,n

1nMm11,n211
1

2
m~m21!DjjMm22,n .

~11!

In particular, note that the conditionj(t50)5h(t50)50
ensures thatM1,0(t)5M0,1(t)50. In the following I will
only need the second order momentsM0,2(t), M2,0(t), and
M1,1(t) which, as expected for a Gaussian process, are
coupled by~11! to form a closed set.

III. DIFFUSION IN ENERGY

Consider a labeled test particle in the SPMS and identify
its energy as«(x,v), the energy of the associated Vlasov
orbit. As a result of diffusion, after a timet it will have
position and velocityx8, v8 and energy«85«(x8,v8). Let
dx(t), dv(t), and da(t) represent the small deviations of
x, v, anda from their Vlasov images aftert. The Vlasov
flow provides a connection between acceleration and posi-
tion so, from~6!, note that

da5
]a

]x
522rdx. ~12!

Thus the change in energy in timet can be expressed in
terms of the scaled Markov variablesj,h
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Equation~13! is important because it establishes the relation-
ship between the energy fluctuations of a test particle and the
Markovian variablesj,h. It is easily seen from~11! that the
mean vanishes (^d«&50) and the variance ofd« is given by
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A differential equation for the evolution of the variance in
time is obtained by invoking~11! and recalling that on a
Vlasov trajectory,
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Taking the derivative of~14! wrt time then simply yields
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Note that the right-hand side of~16! depends on time only
through xD , vD , aD , and rD which are all time periodic
with periodT(«). Thus the rate of increase of the variance is
exactly periodic in time, so the variance after one period is
independent of the initial phase of the particle on the Vlasov
trajectory.

Let s«
2[N^d«(T)2& and note that it is independent of

N, of time, and the initial phase of a Vlasov trajectory. For a
particular choice off (x,v) it depends only on«. Now, as
N becomes large, the energy of a particle will differ very
little from that of its Vlasov image after only one period.
Thus, over a time scale of many periods,« itself may be
regarded as Markov. Moreover, since the change in« during
a period becomes small with increasingN, the process is
continuous and can be modeled as a diffusion. As such, the
Fokker-Planck equation governingP(«,t), its statistical dis-
tribution, is determined solely by ^d«(T)&/T and
^d«(T)2&/T, the first and second infinitesimal increments of
«(T) @17,18#. By evaluating the increments after a time in-
terval T, we obtain a theory which is valid on time scales
whereT is small. In the parlance of astrophysics literature,
this is an ‘‘orbit-averaged’’ Fokker-Planck equation@20#.
From the above it is clear that the first increment vanishes
and the second increment is simplys«

2/NT. Thus P(«,t)
evolves according to the FP equation
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]«2 F s«
2

NT
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Formally, asN→`, P(«,t) becomes stationary. However,
by introducing the scaled timet5t/N and the diffusion
‘‘constant’’ ~or function! D(«)5s«

2/T, we finally get

]P~«,t!

]t
5
1

2

]2

]«2
@D~«!P~«,t!# ~18!

for P(«,t) which has no explicit dependence onN.

IV. INTERPRETATION AND CONCLUSIONS

There are two possible interpretations of Eq.~18!. First it
provides the evolution of the energy probability density
function for a labeled ‘‘test’’ particle in the system; i.e.,
given a particular initial energy« in , in which case
P(«,0)5d(«2« in ), its solution yieldsP(«,t)d«, the prob-
ability of finding the particle in the small energy ranged«
after the ~scaled! time t. The structure of the equation is
deceptively simple. For an arbitrary, Vlasov stationary,
f (x,v), the evaluation requires the solution of~17! and the
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evaluation ofT(«) for every« @20#. In practice this can be
accomplished numerically, but the details are not given here.
However, let me mention that the process is simplified by
taking advantage of the fact that a stationaryf functionally
depends onx and v only through its dependence on the
specific energy h5v2/21f(x) @16,21#. In Fig. 1,
N^d«(t)2& is plotted for~2!, the equilibrium case. Note that
it increases nearly linearly with time and, more importantly,
the increase per period is exactly constant, as expected. This

is the key point. Thus, for a given stationaryf (x,v), ~18!
provides the microscopic relaxation of the energy distribu-
tion of a test particle resulting from its drift from orbit to
orbit in m space.

Of equal or greater importance is the fact that~18! can be
used to determine the macroscopic evolution off (x,v) itself.
This can be seen by noting that the energy ofeachparticle in
the system diffuses and therefore qualifies as a ‘‘test’’ par-
ticle. ThusP(«,t) can be interpreted as the energy distribu-
tion for all of the particles in the entire system. As such, it is
related tof (x,v) through

P~«,t!5E
2`

`

dx8E
2`

`

dv8d@h~x8,v8!2«# f ~x8,v8;t!

5 f ~«,t!/T~«,t!. ~19!

With this P-f connection, sinceD is also a functional off
@see~16! and ~19!#, ~18! now provides a nonlinear equation
for the evolution off (x,v). In practice it can be solved nu-
merically by first advancingP for a given potential function
f(x), and then determining the change inf induced by the
newP. This procedure was successfully introduced by Cohn
@20# for the case of a relaxing globular cluster. In the future
I plan to show that the method is also suited for the SPMSs
with none of the additional approximations required in the
cluster case.

The central conclusion is that, in each interpretation, time
scales withN exactly and there is no additional, hiddenN
dependence. Thus, in agreement with the recent simulations
@13#, eachrelaxation process occurs on a time scale propor-
tional toN and only differs from the other by a multiplicative
constant, i.e.,a or b. I will plan in a future publication to
provide the details for calculating these constants.
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FIG. 1. Evolution of the scaled variance in energy,N^d«(t)2&,
versus time. Note that the behavior is nearly linear, and that the
increase per period is an invariant, so that the function can be rep-
resented as a linear term plus a bounded periodic oscillation.
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